Lorenz, B., Schmidt, K., Hiller, W., Abram, U. \& Hübener, R. (1993). Inorg. Chim. Acta, 208, 195-199.
Melnik, M. \& van Lier, J. (1987). Coord. Chem. Rev. 77, 275-324.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 1985-1987

Heptacoordinate $\mathbf{C u}^{\mathrm{II}}$ in catena-
 Poly[aquabis(benzimidazole- N^{3})copper(II)-$\boldsymbol{\mu}$-adipato- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}: \boldsymbol{O}^{\prime \prime}, \boldsymbol{O}^{\prime \prime \prime}\right]$

Antta Tosik, Lestaw Sieroń and
Maria Bukowska-Strzyżewska
Institute of General and Ecological Chemistry, Technical University, 90-924 Łódź, Poland

(Received 3 February 1995; accepted 5 May 1995)

Abstract

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, has been synthesized and its crystal structure determined by single-crystal X-ray diffraction at room temperature. The seven-coordinate $\mathrm{Cu}^{\mathrm{II}}$ complexes adopt a C_{2} elongated tetragonal pyramidal geometry with doublecapped base. The Cu atoms are located on the twofold axes and are connected by bridging tetradentate adipate ions to form polymeric chains. In the base of the coordination polyhedron, the two short $\mathrm{Cu}-\mathrm{N}$ bonds are 2.007 (2) \AA in length and the two short $\mathrm{Cu}-\mathrm{O}$ bonds are 2.010 (2) \AA. The length of the apical $\mathrm{Cu}-\mathrm{H}_{2} \mathrm{O}$ bond is 2.245 (4) \AA; the lengths of the two long semicoordinate $\mathrm{Cu}-\mathrm{O}$ bonds, which complete the seven coordination, are 2.930 (2) A.. The intermolecular hydrogen bonds and geometry of the carboxylate group are discussed.

Comment

This work forms part of a continuing study of $\mathrm{Cu}^{\text {II }}$ complexes with benzimidazole and dicarboxylic acids (Tosik \& Bukowska-Strzyżewska, 1992). A fragment of the polymeric structure of the title compound, (I), is shown in Fig. 1. The structure represents the first example of a seven-coordinate alkylcarboxylate $\mathrm{Cu}^{\mathrm{II}}$ complex (Orpen et al., 1989).
Each Cu atom and $\mathrm{H}_{2} \mathrm{O}$ molecule are located on the twofold axis. The Cu atoms are connected by bridging of tetradentate adipate ions to form polymeric chains. Two N atoms, one from each benzimidazole molecule, and two O atoms, one from each adipate ion, form short $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bonds of lengths 2.007 (2) and 2.010 (2) \AA, respectively. Along with this deformed square coordination, the $\mathrm{Cu}-\mathrm{H}_{2} \mathrm{O}$ bond of 2.245 (4) \AA

(I)
forms an elongated pyramid. The observed short $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bonds are distinctly longer than the average literature data for $\mathrm{Cu}^{\mathrm{II}}$ of coordination number 5 , and the long $\mathrm{Cu}-\mathrm{H}_{2} \mathrm{O}$ bond is somewhat shorter [according to Orpen et al. (1989), average short $\mathrm{Cu}-\mathrm{N}=$ 1.966, average short $\mathrm{Cu}-\mathrm{O}=1.962$, and average long $\mathrm{Cu}-\mathrm{H}_{2} \mathrm{O}=2.331 \AA \AA^{\AA}$. Two long semicoordinate $\mathrm{Cu}-\mathrm{O}$ bonds of 2.930 (2) \AA complete the Cu coordination environment, forming an elongated tetragonal pyramid with a double-capped base. Thus, $\mathrm{Cu}^{\text {II }}$ heptacoordination is formed by the mutually perpendicular square coordination (four short bonds) and the triangular coordination (three long bonds). The carboxylate groups, in a similar manner to carboxylate groups in the only other known $\mathrm{Cu}^{\mathrm{II}}$ adipate complex (Pajunen \& Nasakkala, 1977), form four-membered almost planar chelate rings with two distinctly different $\mathrm{C}-\mathrm{O}$ bonds and two distinctly different $\mathrm{Cu}-\mathrm{O}$ bonds.

An interesting feature of this structure is the threedimensional hydrogen-bond system formed by $\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{N}$ contacts (Table 3, Fig. 2). The neighbouring

Fig. 1. A fragment of the polymeric structure of (I). For clarity, atom $C 12 b$ (with an occupancy factor of 0.19) is omitted. Displacement ellipsoids are at the 30% probability level.

Fig. 2. Stereoview of the crystal packing of (I) viewed along [001]. H atoms have been omitted and hydrogen bonds are shown as dotted lines.
$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\infty}$ chains are connected by $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ and $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 3$ hydrogen bonds with $\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{O}$ distances of 2.917 (3) and 2.754 (3) \AA, respectively. The $\mathrm{H} 1 \cdots \mathrm{O} 2$ and $\mathrm{H} 3 \cdots \mathrm{O} 3$ bonds of the same carboxylate group with lengths 2.10 (5) and 2.03 (4) \AA, respectively, and $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ and $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 3$ angles of $170(5)$ and $164(4)^{\circ}$, respectively, are very similar.

Experimental

$\mathrm{CuCl}_{2} \mathrm{O}$ ($1 \mathrm{mmol}, 0.17 \mathrm{~g}$) dissolved in water (50 ml) was mixed with benzimidazole ($5 \mathrm{mmol}, 0.59 \mathrm{~g}$) dissolved in water (50 ml), and adipic acid ($5 \mathrm{mmol}, 0.73 \mathrm{~g}$) dissolved in water (50 ml) was added. The blue solution was heated to boiling, filtered and allowed to evaporate slowly. After several days dark blue crystals were obtained. Elemental analysis for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}$ Cu: calculated $\mathrm{C} 51.94, \mathrm{~N} 12.10, \mathrm{H} 4.76 \%$; found C $51.95, \mathrm{~N} 11.99, \mathrm{H} 4.75 \%$. The density D_{m} was measured by flotation in a mixture of iodomethane and benzene.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}-\right.$
$\left(\mathrm{H}_{2} \mathrm{O}\right)$]
$M_{r}=461.96$
Monoclinic
C2/c
$a=14.397$ (1) \AA
$b=17.432(1) \AA$
$c=8.535(1) \AA$
$\beta=112.60(1)^{\circ}$
$V=1977.5(3) \AA^{3}$
$Z=4$
$D_{x}=1.552 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.571 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.93, T_{\text {max }}=0.99$
4495 measured reflections
2041 independent reflections 1916 observed reflections $[F>4 \sigma(F)]$

Refinement

Refinement on F^{2}
$R=0.044$
$w R=0.118$
$S=1.037$
1916 reflections
169 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0617 P)^{2}\right.$
$+4.43 P$]
where $P=\left[\max \left(F_{o}^{2}, 0\right)\right.$ $\left.+2 F_{c}^{2}\right] / 3$
$(\Delta / \sigma)_{\text {max }}=0.0001$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})
$U_{\text {iso }}$ for $\mathrm{Cl} 2 b ; U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ for all others.

Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu}-\mathrm{N} 1$	2.007 (2)	C4-C9	1.397 (4)
$\mathrm{Cu}-\mathrm{Ol}$	2.245 (4)	C5-C6	1.392 (4)
$\mathrm{Cu}-\mathrm{O} 2$	2.010 (2)	C6--C7	1.378 (5)
$\mathrm{Cu}-\mathrm{O} 3$	2.930 (2)	C7-C8	1.398 (5)
O2-C10	1.277 (4)	C8-C9	1.367 (5)
O3-C10	1.230 (4)	C10-C11	1.518 (4)
N1-C2	1.319 (4)	$\mathrm{C} 11-\mathrm{C} 12 a$	1.551 (4)
N1-C5	1.397 (3)	$\mathrm{Cl1}-\mathrm{C} 12 b$	1.559 (7)
N3-C2	1.336 (4)	$\mathrm{Cl} 2 a-\mathrm{Cl} 2 a^{1}$	1.512 (6)
N3-C4	1.372 (4)	$\mathrm{C} 12 b-\mathrm{C} 12 b^{\text {i }}$	1.537 (8)
C4-C5	1.393 (4)		
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{Nl}^{\text {ii }}$	174.10 (14)	O2-C10-O3	124.5 (2)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 1$	92.95 (7)	O2-C10-C11	114.8 (3)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 2$	88.54 (9)	O3-C10-C11	120.6 (3)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O}^{\text {ii }}$	90.73 (9)	C10-C11-C12a	114.6 (3)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 3$	103.9 (1)	$\mathrm{C10-C11-C12b}$	109.1 (5)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	97.13 (7)	$\mathrm{C} 11-\mathrm{Cl} 2 a-\mathrm{C} 12 a^{\text {i }}$	107.8 (4)
$\mathrm{O1}-\mathrm{Cu}-\mathrm{O}_{3}$	140.8 (1)	$\mathrm{Cl1}-\mathrm{Cl2b-C12b}$	106.3 (7)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O}^{\text {ii }}$	165.73 (14)		

Table 3. Hydrogen-bonding geometry ($\AA,{ }^{\circ}$)

D-H...A	D-H	H...A	D...A	$D-\mathrm{H} \cdots A$
N3-H3 . . $\mathrm{O}^{\text {i }}$	0.75 (4)	2.03 (4)	2.754 (3)	164 (4)
$\mathrm{O}-\mathrm{H1} \cdots{ }^{\text {a }}$	0.82 (5)	2.10 (5)	2.917 (3)	170 (5)

The structure was solved by conventional Patterson and Fourier methods and was refined by full-matrix least-squares calculations. The large displacement factors of two central C atoms of the adipate ion indicated disordered localization of the aliphatic chain. Two different positions (a and b) of C 12 were established with occupancy factors of 0.81 and 0.19 , respectively. $\mathrm{C} 12 b$ was refined isotropically. All other non- H atoms were refined anisotropically. The H atoms of the $\mathrm{H}_{2} \mathrm{O}$ group and of the benzimidazole ligand were located from a difference synthesis and refined isotropically. Only H atoms of the aliphatic chain were included in calculated positions with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and refined isotropically using a riding model, with the fixed isotropic displacement factors taken as $1.2 U_{\text {eq }}$ of the bonded C atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP in SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: XPUBL in SHELXTL/PC.

This work was supported by the Polish Committee of Scientific Research (project 2-0575-91-01).

[^0]
References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S84.
Pajunen, A. \& Nasakkala, E. (1977). Finn. Chem. Lett. p. 104.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Tosik, A. \& Bukowska-Strzyżewska, M. (1992). J. Crystallogr. Spectrosc. Res. 22, 225-229.

Acta Cryst. (1995). C51, 1987-1989

catena-Poly[aqua(benzimidazole- N^{3})-copper(Ii)- μ-malonato- $\left.O, O^{\prime \prime}: O^{\prime}\right]$

Anita Tosik, Leslaw Sieroń and
Maria Bukowska-Strzyżzwska
Institute of General and Ecological Chemistry, Technical University, 90-924 Łódź, Poland
(Received 3 Fehruary 1995; accepted 3 April 1995)

Abstract

The title compound forms a polymeric chain, $\left[\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{2}-\right.\right.$ $\left.\left.\mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\infty}$. A malonate ion adopts a bridging position between two Cu atoms, coordinating via three of its O atoms. Two form a six-membered chelate ring, the third coordinates to the neighbouring Cu atom.

The square-pyramidal $\mathrm{Cu}^{\mathrm{II}}$ coordination comprises one N and three O atoms as the base, and an $\mathrm{H}_{2} \mathrm{O}$ molecule in the apical position. The equalization of $\mathrm{C}-\mathrm{O}$ bonds of both carboxylate groups and a differentiation of $\mathrm{Cu}-\mathrm{O}$ bond lengths is observed.

Comment

This work forms part of a wider study of the preparation, properties and structure of $\mathrm{Cu}^{\text {II }}$ complexes with dicarboxylic acids and benzimidazole (Tosik \& Bukowska-Strzyżewska, 1992; Tosik, Sieroń \& Bukowska-Strzyżewska, 1995). The structure of the title complex, (I), is polymeric with [$\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)$ $\left.\mathrm{H}_{2} \mathrm{O}\right]_{\infty}$ chains along the x axis. Fig. 1 shows the independent fragment of the chain.

(I)

The malonate ion adopts a bridging position between two Cu atoms, forming with one, a six-membered chelate ring through two short $\mathrm{Cu}-\mathrm{O}$ bonds $[\mathrm{Cu}-\mathrm{O} 2=$ 1.954 (3) and $\mathrm{Cu}-\mathrm{O} 3=1.970$ (3) $\AA]$, and with a second Cu atom, a short $\mathrm{Cu}-\mathrm{O} 1$ bond of 1.990 (3) \AA.

Fig. 1. An independent fragment of the $\left[\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\infty}$ chain. Displacement ellipsoids are plotted at the 30% probability level.

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1045). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

